Large Scale Graph Matching(LSGM): Techniques, Tools, Applications and Challenges

نویسندگان

  • Azka Mahmood
  • Hina Farooq
  • Javed Ferzund
چکیده

Large Scale Graph Matching (LSGM) is one of the fundamental problems in Graph theory and it has applications in many areas such as Computer Vision, Machine Learning, Pattern Recognition and Big Data Analytics (Data Science). Matching belongs to the combinatorial class of problems which refers to finding correspondence between the nodes of a graph or among set of graphs (subgraphs) either precisely or approximately. Precise Matching is also known as Exact Matching such as (sub)Graph Isomorphism and Approximate Matching is called Inexact Matching in which matching activity concerns with conceptual/semantic matching rather than focusing on structural details of graphs. In this article, a review of matching problem is presented i.e. Semantic Matching (conceptual), Syntactic Matching (structural) and Schematic Matching (Schema based). The aim is to present the current state of the art in Large Scale Graph Matching (LSGM), a systematic review of algorithms, tools and techniques along with the existing challenges of LSGM. Moreover, the potential application domains and related research activities are provided. Keywords—Big Data; Graph Matching; Graph Isomorphism; Graph Analytics; Data Models; Large Scale Graphs

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Centralized Clustering Method To Increase Accuracy In Ontology Matching Systems

Ontology is the main infrastructure of the Semantic Web which provides facilities for integration, searching and sharing of information on the web. Development of ontologies as the basis of semantic web and their heterogeneities have led to the existence of ontology matching. By emerging large-scale ontologies in real domain, the ontology matching systems faced with some problem like memory con...

متن کامل

Relationship between Coefficients of Characteristic Polynomial and Matching Polynomial of Regular Graphs and its Applications

ABSTRACT. Suppose G is a graph, A(G) its adjacency matrix and f(G, x)=x^n+a_(n-1)x^(n-1)+... is the characteristic polynomial of G. The matching polynomial of G is defined as M(G, x) = x^n-m(G,1)x^(n-2) + ... where m(G,k) is the number of k-matchings in G. In this paper, we determine the relationship between 2k-th coefficient of characteristic polynomial, a_(2k), and k-th coefficient of matchin...

متن کامل

Study of Challenges and Techniques in Large Scale Matching

Matching Techniques are becoming very attractive research topic. With the development and the use of a large variety of data (e.g. DB schemas, ontologies, taxonomies), in many domains (e.g. libraries, life science, etc), Matching Techniques are called to overcome the challenge of aligning and reconciling theses different interrelated representations. In this paper, we are interested in studying...

متن کامل

LPKP: location-based probabilistic key pre-distribution scheme for large-scale wireless sensor networks using graph coloring

Communication security of wireless sensor networks is achieved using cryptographic keys assigned to the nodes. Due to resource constraints in such networks, random key pre-distribution schemes are of high interest. Although in most of these schemes no location information is considered, there are scenarios that location information can be obtained by nodes after their deployment. In this paper,...

متن کامل

A partition-based algorithm for clustering large-scale software systems

Clustering techniques are used to extract the structure of software for understanding, maintaining, and refactoring. In the literature, most of the proposed approaches for software clustering are divided into hierarchical algorithms and search-based techniques. In the former, clustering is a process of merging (splitting) similar (non-similar) clusters. These techniques suffered from the drawba...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017